

Carbohydrate Research 267 (1995) 299-306

Note

Assignment of ¹H and ¹³C NMR chemical shifts of a D-mannan composed of α -(1 \rightarrow 2) and α -(1 \rightarrow 6) linkages obtained from *Candida kefyr* IFO 0586 strain

Hidemitsu Kobayashi, Masahiko Watanabe, Mariko Komido, Kyoko Matsuda, Tomoko Ikeda-Hasebe, Mutsumi Suzuki, Nobuyuki Shibata, Kanehiko Hisamichi ¹, Shigeo Suzuki *

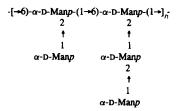
Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan

Received 27 June 1994; accepted in revised form 10 September 1994

Keywords: Candida kefyr IFO 0586 strain; D-Mannan; NMR chemical shifts, ¹H and ¹³C

Recently, Kanbe and Cutler [1] reported that the α -linked oligo-D-mannosyl side-chains of a cell-wall D-mannan of the pathogenic yeast *Candida albicans* is in large part responsible for the binding of yeast cells to the marginal zone of mouse spleen. Stratford [2] also noted the importance of α -linked oligo-D-mannosyl side-chains of cell wall D-mannan in the mechanism of several types of yeast flocculation. Furthermore, Nelson and co-workers [3,4] reported that the alkali-released α -linked D-manno-oligosac-charides obtained from a *C. albicans* cell-wall D-mannan were potent inhibitors of lymphoproliferation induced by the parent D-mannan. These facts seem of interest from the viewpoints of both host-parasite interactions and the biological roles of carbohydrates.

The outer chain moiety of many yeast D-mannans has a long backbone consisting solely of α - $(1 \rightarrow 6)$ -linked D-mannopyranose units to which are attached many sidechains containing various kind of linkages attached to O-2 of D-mannopyranose residues


^{*} Corresponding author.

¹ First Department of Medicinal Chemistry.

of the backbone in a comb-like structure [5–7]. In previous papers [8–12], it was shown that the assignments of the ^{1}H and ^{13}C chemical shifts for various oligosaccharides corresponding to the side-chains obtained from such types of yeast D-mannans could be utilized for the structural analysis of the parent D-mannans using such 2D-NMR techniques as $^{1}H^{-13}C$ COSY and/or 2D-HOHAHA.

Tsai et al. [13] reported the assignment of H-1 chemical shift of an α -(1 \rightarrow 6)-linked oligo-D-mannosyl backbone substituted by one D-mannopyranose through O-2 in the α configuration, by the analysis of an inner-core moiety of D-mannan obtained from Saccharomyces cerevisiae mnn 2 mutant strain. Recently, Shibata et al. [11] made assignments of H-1 and H-2 chemical shifts of the same unit substituted by α -(1 \rightarrow 2)-linked oligo-D-mannosyl side chains based on the findings of Tsai et al. [13] and Hernandez et al. [14]. The assignment of these ¹H and ¹³C chemical shifts may be useful for the structural determination of the outer chain moiety of D-mannans using NMR analyses, without recourse to such destructive procedures as methylation analysis, acid hydrolysis, acetolysis, and so on.

Because of the structural simplicity of the D-mannan of the pathogenic yeast *Candida kefyr* IFO 0586, this D-mannan may be utilized to elucidate the cell-cell interaction mechanisms in host-parasite interactions of the genus *Candida*. Therefore, we assigned the chemical shifts in the ¹H and ¹³C NMR spectra of this D-mannan (Fr. K) which has a long α -(1 \rightarrow 6)-linked D-mannopyranosyl backbone and many short α -(1 \rightarrow 2)-linked D-mannopyranosyl side-chains in a comb-like structure as follows [15].

In order to obtain oligosaccharides retaining the α - $(1 \rightarrow 6)$ -linked D-mannopyranose unit of the backbone, Fr. K was subjected to mild acetolysis [16]. Fig. 1A shows the elution profile of the acetolysates of Fr. K containing D-manno-oligosaccharides of dp 2–5 (M_2 – M_5 , respectively) on Bio-Gel P-2. The 1 H– 13 C COSY spectra of M_2 and M_3 (Figs. 2A and B) indicated that these oligosaccharides have the structures 1 and 2, respectively. However, in the spectra of M_4 and M_5 (Figs. 2C and D), the presence of a cross-peak (H-1, 5.082 or 5.083 ppm; C-1, 99.06 ppm) suggest that these oligosaccharides contain α - $(1 \rightarrow 6)$ -linked D-mannopyranose residues based on previous findings concerning the D-mannan of *S. cerevisiae* wild-type strain [17].

These oligosaccharides (M_4 and M_5) were therefore reduced with NaBH₄ and then conventionally acetolyzed. Figs. 1B and C show the elution profiles of the products obtained from reduced M_4 and M_5 after acetolysis. Each oligosaccharide gave two major products, M_4 -I and M_4 -II, and M_5 -I and M_5 -II, respectively. The identical

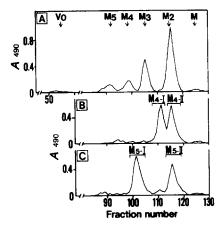


Fig. 1. Gel-filtration of the products obtained from Fr. K by mild acetolysis (A), and those obtained from the reduced tetraose (B) and pentaose (C) by conventional acetolysis. M_5-M_2 and M indicate D-manno-oligosaccharides, pentaose, tetraose, triose, and biose, and D-mannopyranose, respectively.

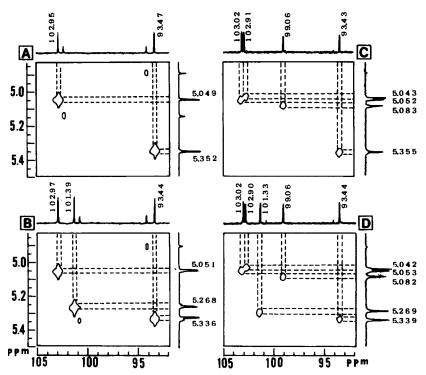


Fig. 2. $^{1}H^{-13}C$ COSY (anomeric region) spectra of D-manno-oligosaccharides, M $_{2}$ (A), M $_{3}$ (B), M $_{4}$ (C), and M $_{5}$ (D).

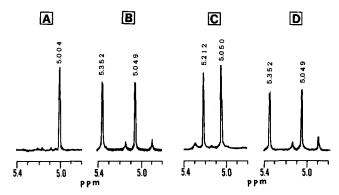
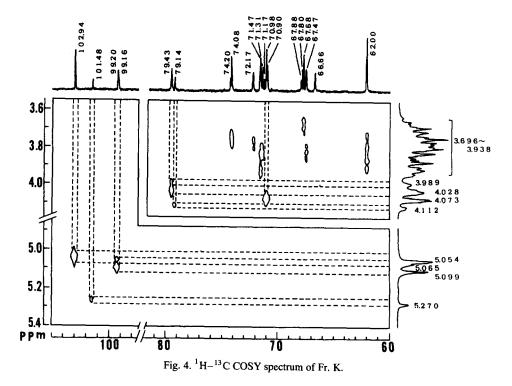



Fig. 3. 1 H NMR (H-1 region) spectra of the acetolysates, M₄-I (A), M₄-II (B), M₅-I (C), and M₅-II (D), obtained from the reduced D-mannotetraose and D-mannopentaose, respectively.

retention times of M_4 -II and M_5 -II agree with that of M_2 already described and the product was identified as D-mannobiose (1) by 1 H NMR analysis (Figs. 3B and D). The 1 H NMR spectra of M_4 -I and M_5 -I (Figs. 3A and C) were in agreement with the structures of the reduced biose and triose (3 and 4, respectively). Therefore, the two oligosaccharides, M_4 and M_5 , obtained from Fr. K by mild acetolysis were identified as 5 and 6, respectively. The D-mannopentaose corresponding to 6 was obtained by Stewart et al. [18] from *S. cerevisiae* wild type D-mannan by short-term acetolysis. However, the D-mannotetraose corresponding to 5 has not hitherto been obtained, and therefore the assignment of chemical shifts of M_4 (5) together with M_5 (6) had not yet been made. 1 H- 1 3C COSY spectrometry of M_2 - M_5 (1, 2, 5, and 6, respectively) resulted in the assignments of the 1 H (H-1) and 1 3C (C-1) signals as shown in Table 1. The result of assignment of the O-2 substituted α -(1 \rightarrow 6)-linked D-mannopyranose unit (residue 1" corresponding to the cross-peak (H-1, 5.082 ppm; C-1, 99.06 ppm) in the spectra of M_4 and M_5 (Figs. 2C and D) is similar to that of the assignment for the same position of the

Table 1 1 H and 13 C NMr chemical shifts of D-manno-oligosaccharides (α anomer) obtained from Fr. K

Structure	Chemical shift (ppm)							
	H-1 Residue			C-1				
				Residue				
	1"	1' 1""	1 1‴	1"	1' 1""	1 1‴		
1		5.049	5.352		102.95	93.47		
2	5.051	5.268	5.336	102.97	101.39	93.44		
5		5.052	5.355		103.02	93.43		
		5.043	5.083		102.91	99.06		
6	5.053	5.269	5.339	103.02	101.33	93.44		
		5.042	5.082		102.90	99.06		

D-mannopyranose unit in D-mannopentaose (7) obtained from S. cerevisiae wild type D-mannan [17].

$$\alpha$$
-D-Man p -(1-+2)-[α -D-Man p -(1-+2)] _{n} -D-Man 1 n =0 2 n =1
$$\alpha$$
-D-Man p -(1-+2)-[α -D-Man p -(1-+2)] _{n} -D-Man-ol 3 n =0 4 n =1
$$\alpha$$
-D-Man p -(1-+2)-[α -D-Man p -(1-+2)] _{n} -D-Man 6 $+$ 1 $+$ 1 $+$ 1 $+$ 2 $+$ 2 $+$ 3 $+$ 4 $+$ 1 $+$ 4 $+$ 1 $+$ 4 $+$ 4 $+$ 4 $+$ 4 $+$ 4 $+$ 4 $+$ 5 $+$ 6 $+$ 7 $+$ 9

Table 2 ¹H and ¹³C NMR chemical shifts of D-mannan, Fr. K

Structure	Chemical shift (ppm)					
		H-1 (H-2)		C-1 (C-2)		
$[\rightarrow 6)-\alpha-D-Man_p-(1\rightarrow 6)-\alpha-D-Man_p-(1\rightarrow)_n$		5.099 (4.027)	5.065	99.20 (79.43)	99.16 (79.43)	
α -D-Man p	α -D- Man_p \uparrow	5.054	5.270 (4.112)	102.94 (70.98)	101.48 (79.14)	
	α-D- M an <i>p</i>	. ,	5.054 (4.073)		102.94 (70.98)	

Fig. 4 shows the ¹H-¹³C COSY spectrum of Fr. K. The strong cross-peak (H-1, 5.054 ppm; C-1, 102.94 ppm) and the weak one (H-1, 5.270 ppm; C-1, 101.48 ppm) correspond to the nonreducing terminal and internal α -(1 \rightarrow 2)-linked p-mannopyranose units, respectively. Therefore, the other two cross-peaks, (H-1, 5.099 ppm; C-1, 99.20 ppm) and (H-1, 5.065 ppm; C-1, 99.16 ppm), were identified as being from the 2,6-branched D-mannopyranose units of the backbone, that is, the former strong and the latter weak cross-peaks correspond to the D-mannopyranose units in the α - $(1 \rightarrow 6)$ -linked D-mannan backbone substituted at O-2 by single D-mannopyranosyl and α -(1 \rightarrow 2)-linked D-mannobiosyl units in the α configuration. This finding indicates that the H-1 signal of the O-2 substituted p-mannopyranose units in the α -(1 \rightarrow 6)-linked p-mannan backbone bearing oligo-D-mannosyl side-chains is shifted upfield in comparison with that of a D-mannopyranose substituted one. Further, this interpretation is supported by the result of acetolysis of Fr. K, which gave a large amount of M₂ and relatively small amounts of M₃ (Fig. 2A). Therefore, both H-1 signals of two kinds of O-2 substituted p-mannopyranose units in the α -(1 \rightarrow 6)-linked D-mannan backbone in Fr. K are confirmed to appear downfield of the unsubstituted one, 4.905 ppm [15,17]. The H-2 chemical shifts were assigned by 2D-HOHAHA analysis of Fr. K (spectrum not shown, see ref. [15]). Therefore, the ¹H (H-1 and H-2) and ¹³C (C-1 and C-2) chemical shifts in the spectrum of Fr. K were assigned as in Table 2.

The present study achieves the assignments of 1 H (H-1 and H-2) and 13 C (C-1 and C-2) chemical shifts of 2,6-branched D-mannopyranose residue constituting the connecting point between the backbone and the side-chain of a D-mannan having a comb-like structure. These assignments should prove useful for the structural determination of various yeast D-mannans by 1 H- 13 C COSY and/or 2D-HOHAHA NMR analyses, without any chemical degradation procedures.

1. Experimental

Materials.—The mannan of C. kefyr IFO 0586 strain, Fr. K, was the specimen used in a previous study [15]. Bio-Gel P-2 (400 mesh), fractionation range 100–1800 Da, was purchased from Bio-Rad (Richmond, CA, USA).

Mild acetolysis of Fr. K.—This procedure was as described by Kobayashi et al. [16], using 100:100:1 Ac₂O-AcOH-H₂SO₄ for 36 h at 40° C. After O-deacetylation, the mixture of oligosaccharides was fractionated on a column (2.5 × 100 cm) of Bio-Gel P-2.

Reduction of oligosaccharides M4 and M5.—This was done as previously described [17].

Acetolysis of reduced M4 and M5.—This was performed as previously described [19]; a modification of the method of Kocourek and Ballou [20], with 10:10:1 $Ac_2O-AcOH-H_2SO_4$ for 13 h at 40°C. After O-deacetylation, the mixture of oligosaccharides was fractionated on a column (2.5 × 100 cm) of Bio-Gel P-2.

NMR spectroscopy.—¹H NMR spectra (internal acetone, 2.217 ppm) were measured with a Jeol JNM-GSX 400 spectrometer on solutions (3–10 mg sample/0.7 mL) in D_2O at 70°C. ¹³C NMR spectra (internal CD₃OD, 49.00 ppm) were measured with the same spectrometer on solutions (15–25 mg sample/0.7 mL) in D_2O at 55°C. ¹H–¹³C COSY spectra were also recorded under the same conditions as for the ¹H and ¹³C NMR spectra. The 2D-HOHAHA spectrum was recorded for a solution (10 mg sample/0.7 mL) in D_2O at 45°C.

References

- [1] T. Kanbe and J.E. Cutler, Infect. Immun., 62 (1994) 1662-1668.
- [2] M. Stratford, Yeast, 8 (1992) 635-645.
- [3] R.D. Nelson, N. Shibata, R.P. Podzorski, and M.J. Herron, Clin. Microbiol. Rev., 4 (1991) 1-19.
- [4] R.P. Podzorski, G.R. Gray, and R.D. Nelson, J. Immunol., 144 (1990) 707-716.
- [5] T. Nakajima and C.E. Ballou, J. Biol. Chem., 249 (1974) 7679–7684.
- [6] S. Suzuki, N. Shibata, and H. Kobayashi, in J.P. Latgé and D. Boucias (Eds.), Fungal Cell Wall and Immune Response, NATO ASI Ser., Vol. H53 Springer-Verlag, Berlin, 1991, pp 111-121.
- [7] H. Kobayashi, T. Kojimahara, K. Takahashi, M. Takikawa, S. Takahashi, N. Shibata, Y. Okawa, and S. Suzuki, Carbohydr. Res., 214 (1991) 131–145.
- [8] H. Kobayashi, P. Giummelly, S. Takahashi, M. Ishida, J. Sato, M. Takaku, Y. Nishidate, N. Shibata, Y. Okawa, and S. Suzuki, *Biochem. Biophys. Res. Commun.*, 175 (1991) 1003-1009.
- [9] H. Kobayashi, M. Takaku, Y. Nishidate, S. Takahashi, M. Takikawa, N. Shibata, and S. Suzuki, Carbohydr. Res., 231 (1992) 105-116.
- [10] N. Shibata, M. Arai, E. Haga, T. Kikuchi, M. Najima, T. Satoh, H. Kobayashi, and S. Suzuki, *Infect. Immun.*, 60 (1992) 4100-4110.
- [11] N. Shibata, C. Kojima, Y. Satoh, R. Satoh, H. Kobayashi, and S. Suzuki, Eur. J. Biochem., 217 (1993) 1–12.
- [12] H. Kobayashi, N. Shibata, A. Suzuki, S. Takahashi, S. Takahashi, M. Suzuki, K. Matsuda, K. Hisamichi, and S. Suzuki, FEBS Lett., 342 (1994) 19-22.
- [13] P.K. Tsai, J. Frevert, and C.E. Ballou, J. Biol. Chem., 259 (1984) 3805-3811.
- [14] L.M. Hernandez, R. Ballou, E. Alvarado, P.-K. Tsai, and C.E. Ballou, J. Biol. Chem., 264 (1989) 13648-13659.

- [15] H. Kobayashi, M. Komido, M. Watanabe, K. Matsuda, T. Ikeda, M. Suzuki, H. Oyamada, N. Shibata, and S. Suzuki, *Infect. Immun.*, 62 (1994) 4425-4431.
- [16] H. Kobayashi, N. Shibata, and S. Suzuki, Arch. Biochem. Biophys., 245 (1986) 494-503.
- [17] H. Kobayashi, N. Shibata, M. Watanabe, M. Komido, N. Hashimoto, K. Hisamichi, and S. Suzuki, Carbohydr. Res., 231 (1992) 317–323.
- [18] T.S. Stewart, P.B. Mendersshausen, and C.E. Ballou, Biochemistry, 7 (1968) 1843-1854.
- [19] H. Kobayashi, N. Shibata, H. Mitobe, Y. Ohkubo, and S. Suzuki, Arch. Biochem. Biophys., 272 (1989) 364-375.
- [20] J. Kocourek and C.E. Ballou, J. Bacteriol., 100 (1969) 1175-1181.